Pythagoras' Theorem

PYTHAGORAS- KEY WORDS AND DEFINITIONS

Pythagoras' Theorem

Hypotenuse

Right-angled triangle

Square number

Square root

Unit of measure

Pythagorean triple

Unit of measure

Pythagoras' Theorem

Pythagoras' theorem states that in a right-angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides. etc. etc.

The longest side on a right-angled triangle. It is opposite the right angle.

A number that is multiplied by itself.

The inverse of squaring a number. You find the number that is squared to give you the number you have.
A unit given to tell us the size of the shape. E.g. cm, m, inch, feet,

A unit given to tell us the size of the shape. E.g. cm, m, inch, feet,

Labelling the triangle

Pythagoras' theorem will only work on a right angled triangle

The longest side, opposite the right angle, which we must label c, is called the hypotenuse.

It does not matter which of the other two sides we label a and b.

Pythagorean Triples

Maths FOUNDATION: Learning Cycle 2

Pythagoras' Theorem

Calculating the hypotenuse, c.

We want to find the value of c.
To remove the square from c we square root.
$a^{2}+b^{2}=c^{2}$
$\sqrt{a^{2}+b^{2}}=c$
or

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Now we know how to calculate c, we just substitute values in for a and b.
Calculate the length of x to 3 s.f.

Label the sides with a, b and c.
Remember that c is the hypotenuse.

Calculating a shorter side, a or b.

How do we calculate a or b ?

To calculate a :

$$
\begin{gathered}
-b^{2} a^{2}+b^{2}=c^{2} \\
a^{2}=c^{2}-b^{2}
\end{gathered}
$$

square root

$$
a=\sqrt{c^{2}-b^{2}} \text { square root }
$$

To calculate b:

$$
-a^{2} \begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& b^{2}=c^{2}-a^{2}
\end{aligned}
$$

square root square root

$$
b=\sqrt{c^{2}-a^{2}}
$$

Now we know how to calculate a or b, we just substitute the other values in.

$$
\text { Calculate the length of } x \text { to } 2 \text { s.f. }
$$

Label the sides with a, b and c. Remember that c is the hypotenuse.

$$
a=\sqrt{c^{2}-b^{2}}
$$

Substitute in c and b.

$$
\begin{aligned}
& a=\sqrt{11^{2}-8^{2}} \\
& a=\sqrt{121-64}
\end{aligned}
$$

Complete the calculation in the square root.

$$
a=\sqrt{57}
$$

Type into your calculator.

$$
a=7.549834435
$$

$$
\text { Round to } 2 \text { significant figures. }
$$

$$
a=7.5(2 \text { s.f. })
$$

$$
\text { So } x=7.5 \mathrm{~m}
$$

Trigonometry

TRIGONOMETRY - KEY WORDS AND DEFINITIONS

Hypotenuse
The longest side in a right angled triangle.

Opposite
The side facing the angle in a right angled triangle

Adjacent
The side next to the angle given in a right angled triangle.

Square number
The result when you multiply a number by itself.

Inverse operation

Square root

Labelling the triangle

When and why do we use Trigonometry?

We use trigonometry to find missing lengths and angles in right angled triangles.
To find a missing side, we need to have an angle and a side.
To find a missing angle, we need to have two sides.
We also need to be able to recall exact trigonometric values for non-calculator questions.
For calculator questions, you will use the \sin , \cos and \tan buttons on your calculator.

SOHCAHTOA
Cover over the part that you need, then complete the calculation with the remaining two.

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

Trigonometry

Maths FOUNDATION: Learning Cycle 2

Linear Equations

LINEAR EQUATIONS - KEY WORDS AND DEFINITIONS

Solution
A value we can put in place of a variable that makes the equation true.

Variable

Equation

Expression

Identity

Linear

Inequality

Inverse operation

Solve one step equations

One step equations only take one operation to find the unknown variables' value.

	$x+10$	$=19$	
-10			
x	$=9$	-10	
-10	$5 x$	$=20$	
	x	$=4$	-10

$$
\begin{array}{r}
x-2=6 \\
+2 \quad x=8
\end{array}
$$

$$
\frac{x}{2}=5
$$

$$
x=10
$$

Balancing equations

Solving equations is a lot like balancing scales.

Whatever we do on one side of the equals sign, we have to do to the other.
Our aim is to get the unknown variable on its own, to achieve this we do inverse operations.

We must show each step taken.

$$
\begin{array}{rrl|}
\hline 4 x+1 & =9 & -1 \\
-1 & 4 x & =8 \\
\div 2 & \div 2 \\
\hline 2 & =2
\end{array}
$$

Linear Equations

Solve two step equations

Two step equations take two operation to find the unknown variables'
value.

		$2 x+3$	$=15$
-3			
	$2 x$	$=12$	-3
$\div 2$	x	$=6$	$\div 2$

Maths - Foundation

Solving equations in context

Solve to find the value of x when the perimeter is 42 cm .
$2 x+3$

Calculate x

We know the perimeter is 42 cm

$$
2 x+3+2 x+3+x+x=42
$$

$$
9 x+6=42
$$

$$
6 x=36
$$

$$
x=6
$$

Solve equations with brackets

Expand the brackets first to help solve the equation.

$$
\begin{array}{rlrl}
5(x-3) & =20 \\
+15 & 5 x-15 & =20 \\
+15 & 5 x & =35 \\
\div 5 & x & =7
\end{array}
$$

$$
\begin{aligned}
& \text { Angles in a triangle sum to } 180^{\circ} . \\
& \begin{aligned}
2 x-20+x+20+2 x-40 & =180 \\
5 x-40 & =180 \\
5 x & =220 \\
x & =45
\end{aligned}
\end{aligned}
$$

Solve equations with unknowns on each side

Put all of the terms with the unknown variable onto one side of the equation and put everything else on the other side.

Jane is 4 years older than Tom.
David is twice as old as Jane.
The sum of their ages is 60 .
Using algebra. Find the age of each person.

```
Tom=x }\quad>1
Jane }=x+4->12+4=1
David}=2x+8\longrightarrow\times12)+8=3
```

 \(x+x+4+2 x+8=60\)
 \(4 x+12=60\)
 \(4 x=48\)
 \(x=12\)

Simultaneous Equations

SIMULTANEOUS EQUATIONS - KEY WORDS AND DEFINITIONS

Simultaneous equations
Solution

Variable

Equation

Coefficient

Substitute

LCM

Eliminate

Steps for solving simultaneous equations

Step 1 - Rearrange your equations, if needed, so that the variables are in the same order and on the same side of the equals sign.
Step 2 - Match up the numbers in front of one of your variables. You may need to multiply one or both equations to do this. You only need to do this for one variable. It does not matter which one you choose, you will still end up with the same result at the end.
Step 3 - Add or subtract the two equations so that you eliminate the terms with the same number in front. (Same Sign Subtract, Add If Different)
Step 4 - Solve the resulting equation.
Step 5 - Substitute the result from step 4 back into one of the original equations and solve it for the remaining variable.

Solving simultaneous equations

Solve these simultaneous equations.

$$
\begin{aligned}
3 x+5 y & =1 \\
x-y & =-5
\end{aligned}
$$

Step 1 - These are already written with the variables in the same order so we do not need to do anything.

Step 2 - You have a choice now whether you make the x or y values the same We are going to make the x value the same for this example.
To do this, we need to multiply the second equation by 3 so that both equations have $3 x$.

$$
\left.\begin{array}{lll}
\begin{array}{rl}
\text { The first equation does } \\
\text { not need to change. }
\end{array} & \begin{array}{l}
-3 x+5 y=1 \\
3 x-3 y=-15
\end{array} \\
\text { Step } 3 \text { - Both } 3 x \text { are positive. }
\end{array} \begin{array}{l}
\text { Same } \\
\text { Sign } \\
\text { Subtra } \\
\text { Ste } 8 y
\end{array}\right)
$$

Step 5 - Substitute $y=2$ into either of the original equations. We are going to choose the first one for this example.

	$3 x+5(2)=1$	
	$3 x+10=1$	
-10	$3 x=-9$	-10
$\div 3$	$x=-3$	$\div 3$

By solving our equations simultaneously, we have found that $x=-3$ and $y=2$.
These are the coordinates where the two lines intersect ($-3,2$).

Plans, Elevations and Nets

PLANS, ELEVATIONS AND NETS - KEY WORDS AND DEFINITIONS

Plan
The view from above a 3D shape, this is also known as a birds eye view.
Front elevation The view from the front of a 3D shape.

3D shapes and their nets

3D Shape	Net	Composition	Name
		4 rectangles (2 squares / rectangles)	Cuboid
		6 squares	Cube
0		1 rectangle 2 circles	Cylinder
		4 triangles	Triangular-base d pyramid (tetrahedron)
		2 triangles 3 rectangles	Triangular prism
		1 circle 1 sector	Cone
		6 triangles 1 hexagon	Hexagonal pyramid

Plans, Elevations and Nets

Volume and Surface Area

VOLUME AND SURFACE AREA - KEY WORDS AND DEFINITIONS

Perimeter

Area
Volume
Surface area

Regular
Perpendicular height
Face

Edge
Vertex
Cross section

Prism

The size within a shape.
The length around a shape.

The amount of space within a 3D shape.

The total areas of each face of a 3D shape.

All the sides and angles of a shape are equal.
The height that forms a right angle with the base length.

The flat surface of a 3D shape.

The line where two faces meet.
Where multiple edges of a 3D shape meet.
The constant face of a prism.

A 3D shape that has the same cross-section when you cut it along its length.

Vertices, Edges and Faces

Volume and Surface Area

Volume of prisms

Maths - Foundation
Surface area of a cylinder

For a cylinder, the width of the rectangle is the circumference of the circle.

Remember:
Circumference of circle $=\pi \times$ diameter
Area of a circle $=\pi \times r^{2}$

Surface area
To find the surface area of a shape, we need to calculate the area of each face and add them altogether.

$F=2 \times 3=6$
$B=2 \times 3=6$
$\mathrm{Bt}=2 \times 5=10$
$\mathbf{T}=2 \times 5=10$
$\mathbf{L}=3 \times 5=15$
$\mathbf{R}=3 \times 5=15$

Total $=62 \mathrm{~cm}^{2}$

Compound Measures

COMPOUND MEASURES- KEY WORDS AND DEFINITIONS

Compound measure A measure made up of two or more measurements (e.g. speed, pressure, density)

Unit

Density
Maths - Foundation
Mass
Volume
Pressure
Force

Area

Speed

Distance

Time

A unit given to tell us the size of the shape. E.g. cm, m, inch, feet, etc.
The amount of mass in a volume. It tells us how tightly matter is packed together.

A measure of how much matter is in an object.
The amount of 3-dimensional space an object takes up.
The physical force exerted on an object.
The push and pull of an object.

The amount of space inside the boundary of a flat 2D object such as a circle or square.

How fast something is moving.

A measurement of length, how far travelled through space.

Time is the ongoing sequence of events taking place. The common units of time are seconds, minutes, hours, days, weeks, months and years.

Density, Mass and Volume

$$
\begin{array}{ll}
\text { Density }=\frac{\text { mass }}{\text { volume }} & \mathrm{g} / \mathrm{cm}^{3} \mathrm{~kg} / \mathrm{m}^{3} \\
\text { Volume }=\frac{\text { mass }}{\text { density }} & \mathrm{mm}^{3} \mathrm{~cm}^{3} \mathrm{~m}^{3} \\
\text { Mass }=\text { density } \times \text { volume } & g \mathrm{~kg}
\end{array}
$$

Speed, Distance and Time

Pressure, Force and Area

Common units:

$N / m m^{2} N / c m^{2} N / m^{2} N m m^{2} c m^{2} m^{2}$

Linear Sequences

LINEAR SEQUENCES - KEY WORDS AND DEFINITIONS

Sequence
A sequence is an arrangement of objects or a set of numbers in a particular order followed by some rule.
Linear

Non-Linear

Position

Rule

Difference

Arithmetic

Geometric

Fibonacci together. E.g. $0,1,1,2,3,5,8,13, \ldots$
The difference between terms increases or decreases by different values each time.

A single number or variable.

The place a term is located.

The instructions that relate variables.

The gap between two terms.

A sequence where the difference between the terms is constant. E.g. 5, 8, 11, 14, \ldots

A sequence where each term is found by multiplying the previous one by a fixed non-zero number. E.g. 2, 4, 8, 16, 32, ...
A Fibonacci sequence is created by adding the previous two terms

Triangular numbers

These can make a triangle (hence the name).

Drawing sequences

You will be given a few patterns and asked to draw the next one or two
Look carefully at the patterns you are given - are the lines joined together or are there gaps?

How does the next one change from the previous?

Finding terms

Find the next three terms of the sequence
don't just say "3"
don't just say "3"

The next three terms are $19,22,25$.

Linear Sequences

Generating sequences

To generate a sequence, you will need to follow the rule you are given.
A sequence has 4 as it's first number.
To get the next term in the sequence you "double it, then add 1 ".

Maths - Foundation

 Write the first 5 terms of the sequence.| Double, |
| :---: |
| add 1 |

Double,
add 1
:---:
:---:
The first number in
the sequence.

the sequence.

Using the nth term

We can use the nth term to find terms in the sequence.
n is value we substitute for the term that we want to find.
The sequence " $3 n-2$ " is actually "the 3 times table subtract 2 ".
The sequence " $2 n+1$ " is "the 2 times table add 1 ".
The nth term for a sequence is $3 n-2$. What are the first 3 terms of the sequence?
$3 n-2$ means "multiply by 3 then subtract 2 ".
When $n=1,3 \times 1-2=1$. When $n=2,3 \times 2-2=4$.
When $n=3,3 \times 3-2=7$
So we have the first three terms 1, 4 and 7

Finding the nth term

The nth term is a general formula to generate a sequence using algebra.
It is called the " nth term" because it contains the letter " n ".
The letter " n " basically stands for "number" or the position you want in the sequence.
Find the nth term of this linear sequence.

Find the nth term of this linear sequence.

