Area and Perimeter

Maths FOUNDATION: Learning Cycle 1

Transformations

The size does not change, but the shape is 'flipped' like in a mirror.

Line $x=$? is a vertical line. Line $y=$? is a horizontal line. Line $y=x$ is a diagonal line.

Reflect shape \mathbf{C} in the line $y=x$

Transformations

TRANSFORMATIONS - KEY WORDS AND DEFINITIONS

Enlargement	Enlargement changes the size of an image using a scale factor from a given point.
Positive scale factor	A positive scale factor will increase the size of an image.
Fractional scale factor	A fractional scale factor will reduce the size of an image.
Negative scale factor	A negative scale factor will place the image on the opposite side of the centre of enlargement, with the image inverted.

Scale Factor 3

$$
\begin{aligned}
& \text { means } 3 \text { times larger } \\
& \text { Scale Factor } 1 / 2 \\
& \text { means half the size } \\
& \text { Scale Factor }-3 \text { means it will } \\
& \text { be rotated and } 3 \text { times bigger }
\end{aligned}
$$

Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	
	Negative enlargements will look like they have been rotated. Negative Scale Factor	$\mathrm{SF}=-2$ will be rotated, and also twice as big.

Maths FOUNDATION: Learning Cycle 1

Transformations

TRANSFORMATIONS - KEY WORDS AND DEFINITIONS	
Translate/ Translation	To slide a shape from one position to another using a column vector. Moves a shape on a coordinate grid. Using Column vectors
Column Vector	Used to describe a translation. The top number being how many squares right (+) or left (-). The bottom number is how many square up (+) or down (-). The column vector $\binom{3}{2}$ means 3 right and 2 up. The column vector $\binom{-2}{-2}$ means 2 left and 2 down.

Give the following information when describing each transformation:

Look at the number of marks in the question for a hint of how many pieces of information are needed.

If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.

Describe fully the single transformation that maps shape A

- Translation: Vector
- Rotation: Direction, Angle, Centre
- Reflection: Equation of mirror line
- Enlargement: Scale factor, Centre of enlargement
onto shape B.

Answer:

Reflection in the line $x=-1$

Rounding and Error Intervals

Topic/Skill	Definition/Tips	Example
Place Value	The value of where a digit is within a number.	In 726, the value of the 2 is 20 , as it is in the 'tens' column.
Place Value Columns	The names of the columns that determine the value of each digit. The 'ones' column is also known as the 'units' column.	
Rounding	To make a number simpler but keep its value close to what it was. If the digit to the right of the rounding digit is less than 5 , round down. If the digit to the right of the rounding digit is 5 or more, round up.	74 rounded to the nearest ten is 70 , because 74 is closer to 70 than 80. 152,879 rounded to the nearest thousand is 153,000 .
Decimal Place	The position of a digit to the right of a decimal point.	In the number 0.372 , the 7 is in the second decimal place. 0.372 rounded to two decimal places is 0.37 , because the 2 tells us to round down. Careful with money - don't write $£ 27.4$, instead write $£ 27.40$
Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number. The first significant figure of a number cannot be zero. In a number with a decimal, trailing zeros are not significant.	In the number 0.00821, the first significant figure is the 8. In the number 2.740, the 0 is not a significant figure. 0.00821 rounded to 2 significant figures is 0.0082 . 19357 rounded to 3 significant figures is 19400 . We need to include the two zeros at the end to keep the digits in the same place value columns.
Truncation	A method of approximating a decimal number by dropping all decimal places past a certain point without rounding.	$3.14159265 \ldots$ can be truncated to 3.1415 (note that if it had been rounded, it would become 3.1416)

Maths FOUNDATION: Learning Cycle 1

Rounding and Error Intervals

Topic/Skill	Definition/Tips	Example
Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
Approximation	When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure.	$\frac{348+692}{0.526} \approx \frac{300+700}{0.5}=2000$
	\approx means 'approximately equal to'	Note that dividing by 0.5 is the same as multiplying by 2'

What you need to know: Rounding and Truncation to state error intervals
Key Facts: Rounding a number and truncating are different things. Truncation comes from the word truncare, meaning "to shorten," and can be traced back to the Latin word for the trunk of a tree, which is truncus.
$3.14159265 \ldots$... can be truncated to 3.1415 (note that if it had been rounded, it would become 3.1416).

A question may ask for the error interval for rounding or truncation - take care to read the question!

The upper and lower bound come from the largest and smallest values that would round to a particular number.

Take 'half a unit above and half a unit below'. For example rounded to 1 d.p means nearest 0.1 , so add 0.05 and subtract 0.05 to get the bounds.

All error intervals look the same like this: $\leq x<$

The lowest value a number could have been is the lower bound.

The highest value a number could have been is the upper bound.
E.g. 1 State the upper and lower bound of 360 when it has been rounded to 2 significant figures:

2 significant figures is the nearest 10 , so 'half this' to get 5 , and add on to 360 and take it off $360,355 \leq x<365$

Note: You should know it could be 364.9999... but we write 365 as the upper bound for ease of calculations.
E.g. 2 Truncation: State the error interval of 4.5 when it has been truncated to 1decimal place.

This means it has been 'chopped off'. The lowest value it could have been is 4.5 , the highest is 4.59999 ... so in an error interval
$4.45 \leq x<4.55$

Maths FOUNDATION: Learning Cycle 1

Quadratics

Maths FOUNDATION: Learning Cycle 1

Quadratics

Difference of two squares

The difference of two squares is when you have one squared term subtract another squared term.

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

e.g. $y^{2}-9=(y+3)(y-3)$

$$
\text { e.g. } 4 y^{2}-25=(2 y+5)(2 y-5)
$$

Factorising into double brackets

Steps to factorise quadratic expressions $a x^{2}+b x+c$
Step 1 - Write two brackets with $x^{\prime} \sin :(x \quad)(x \quad)$
Step 2 - Find two numbers that multiply to give ' c ' (the number term) but also add/subtract to give ' b ' (the number in front of the x)

Step 3 - Put your numbers in each bracket with the correct + or - signs.
You can always check your answer by expanding.
Factorise $x^{2}+3 x+2$
We need to find two numbers that multiply to make 2 , and add or subtract to make 3.

$$
=(x+1)(x+2)
$$

Factorising into double brackets

Factorise $x^{2}-7 x+12$
We need to find two numbers that multiply to make 12 , and add or subtract to make -7 .

$$
=(x-3)(x-4) \quad \begin{aligned}
& \text { Factors of } 12 \text { that subtract to } \\
& \text { make }-7 .
\end{aligned}
$$

You can check your answer by expanding.

Factors of 12		
1	12	
2	6	
3	4	

Factorise $x^{2}-5 x-6$

We need to find two numbers that multiply to make -6 , and add or subtract to make -5 .

$$
\begin{array}{ll|l}
=(x-6)(x+1) \\
& \begin{array}{c}
\text { Factors of } 6 \text { that add and subtract to } \\
\text { make }-5 .
\end{array} & \begin{array}{cc}
\text { Factors of } 6 \\
1 & 6 \\
2 & 3
\end{array}
\end{array}
$$

You can check your answer by expanding.

Solving quadratics

To solve a quadratic, we need to find the value of x that makes the equation equal zero. To do this, we factorise as normal then we find the value of x that makes each bracket 0 .

$$
\text { Solve } x^{2}+8 x-20=0
$$

We need to find two numbers that multiply to make -20 , and add or subtract to make 8 .

To make this bracket equal zero, x must be - 10 .

$$
(x+10)(x-2)=0
$$

So the solutions to this equation are

$$
x=-10 \text { and } x=2
$$

To make this bracket equal zero, x must be +2 .

Angles

Maths FOUNDATION: Learning Cycle 1

Angles

To calculate one exterior angle on a regular polygon: $360^{\circ} \div$ the number of sides

Interior angles

The sum of the interior angles in a polygon:
(number of sides-2) x $\mathbf{1 8 0}^{\boldsymbol{o}}$

To find one angle in a regular polygon, you divide the sum of the interior angles by the number of sides.

Angles in parallel lines

Alternate angles are equal

Co-interior angles sum to 180°

Vertically opposite angles are equal

Indices

INDICES - KEY WORDS AND DEFINITIONS		Anything to the power of 1 is itself,$\text { e.g. } 5^{1}=5, \quad 123^{1}=123$		
Index/exponent/po wer	An index, or a power, is the small floating number that goes next to a number or letter.	Anything to the power of 0 is just 1 , e.g. $6^{0}=1,4567^{0}=1$		
Indices	Indices show how many times a number or letter has been multiplied by itself.	1 to the power of anything is still 1 , e.g. $1^{10}=1, \quad 1^{89}=1$		
Square number	A number or variable that has been multiplied by itself.	$\begin{gathered} 5^{3}=5 \times 5 \times 5=125 \\ a^{2}=a \times a \end{gathered}$		
Cube number	A number or variable that has been multiplied by itself and then by itself again.	When multiplying, you add the powers.		
Square root	The square root of a number is the factor that we can multiply by itself to get that number.	$\text { e.g. } 6^{7} \times 6^{4}=6^{7+4}=6^{11}$ When dividing, you subtract the powers.		
Cube root	The cube root of a number is the factor that we can multiply by itself and then by itself again to get that number.	$\text { e.g. } x^{19} \div x^{12}=x^{19-12}=x^{7}$ When raising one power to the another, you multiply the powers.		
Integer	A whole number.	When raising one power to the another, you multiply the powers.$\text { e.g. }\left(2^{5}\right)^{8}=2^{5 \times 8}=2^{40}$		
Coefficient	The number which the variable is being multiplied by.	When you have a fraction, apply the power to both the numerator and denominator.$\text { e.g. }\left(\frac{3}{4}\right)^{3}=\frac{3^{3}}{4^{3}}=\frac{27}{64}$		
Base number	The number/variable that is being multiplied by itself a given number of times.	A negative power turns the number upside-down.		
Variable	A letter or term that represents an unknown number, value or quantity.	$\text { e.g. } 4^{-3}=\frac{1}{4^{3}}=\frac{1}{64^{\prime}} \quad\left(\frac{4}{5}\right)^{-2}=\left(\frac{5}{2}\right)^{2}=\frac{5^{2}}{2^{2}}=\frac{25}{4}$		
Powers of $10 \quad 100^{1}=10 \quad 10^{2}=100 \quad 10^{3}=1000 \quad 10^{4}=10000$		Square roots	Cube roots	
		Square rooting, $\sqrt{ }$, is the inverse operation of squaring a number: e.g. $9^{2}=9 \times 9=81$	Cube rooting, $\sqrt[3]{ }$, is the inverse operation of cubing a number:	
$5^{3 \longleftarrow} \text { Base number } \xrightarrow{\longrightarrow}{ }^{3} a^{2}$			$\sqrt[3]{8}=2$	

Maths FOUNDATION: Learning Cycle 1

Fractions

Maths FOUNDATION: Learning Cycle 1

Fractions

Multiplying fractions

Multiply together your numerators, followed by your denominators. Then simplify if possible.
This is the easiest fraction calculation!

$$
\frac{2}{3} \times \frac{5}{7}=\frac{2 \times 5}{3 \times 7}=\frac{10}{21}
$$

Dividing fractions

Keep your first fraction the same.
Flip your second fraction over.

Change the sign from a divide to a multiply.
$\frac{4}{7} \div \frac{2}{5}=\frac{4}{7} \times \frac{5}{2}=\frac{4 \times 5}{7 \times 2}=\frac{20}{14}=1 \frac{6}{14}=1 \frac{3}{7}$
Change

Adding fractions

Convert mixed numbers into improper fractions!
To add fractions, you need to have a common denominator.
If your fractions have different denominators, you will need to change the denominators first by finding a common multiple.
Once the denominators are the same, you just add the numerators together and simplify if possible.
Same denominators

$$
\frac{2}{9}+\frac{4}{9}=\frac{6}{9}=\frac{2}{3}
$$

\section*{Different denominators
 | 30 |
| :--- |
| is the LCM |
| of 10 and 6. |$\frac{\times 3}{10}+\frac{5}{6}=\frac{9}{30}+\frac{25}{30}=\frac{34}{30}=1 \frac{4}{30}=1 \frac{2}{15}$}

Subtracting fractions

Convert mixed numbers into improper fractions!
To subtract fractions, you follow the same initial steps as for adding. You then subtract your fractions instead of adding.
Same denominators

$$
\frac{4}{8}-\frac{3}{8}=\frac{1}{8}
$$

Different denominators

$$
4 \frac{3}{7}-2 \frac{4}{5}=\frac{31}{7}-\frac{14}{5}=\frac{155}{35}-\frac{98}{35}=\frac{57}{35}=1 \frac{22}{35}
$$

35 is the LCM Convert back into
of 7 and 5 . a mixed number.

Fractions of an amount

To calculate a fraction of an amount, you divide by the denominator and multiply by the numerator.
Calculate $\frac{4}{5}$ of 35
Divide by the denominator $35 \div 5=7$
Multiply by the numerator $4 \times 7=28$
So $\frac{4}{5}$ of $35=28$

Expressing as a fraction

To express a number as a fraction of another number, you write the first number as the numerator and the second number as the denominator. Simplify if possible.

Write 42 as a fraction of 50.

$$
\frac{42}{50}=\frac{21}{25}
$$

